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Summary  

By setting up equations for the differences between local values of temperature and concentration, and values 
appropriate to a spatially uniform, but temporally evolving, reactive atmosphere, the propagation of a plane 
quasi-steady combustion wave (flame) can be studied in an unbounded atmosphere. Confining attention 
(arbitrarily) at this stage to waves of low speed, comparable with generally accepted thermal flame-speed values, 
it is found that a continuous spectrum of quasi-steady wave speeds is possible. The structures of these waves are 
dependent on their speed, and are similar to the ones recently found for half-space burner flames. The actual 
speed of wave propagation in any particular case must depend upon details of the larger disturbance field into 
which the quasi-steady flame must fit, with obvious implications for flame acceleration and related matters. 

O. Introduction 

Theoretical  studies of  pre-mixed flames are complicated by  the fact that the a tmosphere  
ahead of  a combust ion  wave is necessarily in a state of  chemical disequilibrium. Various 
tricks or devices have been proposed to overcome this " co ld -bounda ry  difficulty" (see e.g. 
[11, Ch. 5, Section 4b]; Buckmaster  and Ludford  [2, especially Ch. 2] exploit asymptot ic  
analysis based on the not ion of  a large activation energy for the reaction and therefore 
disregard exponential ly small reaction rates) but  they are not  wholly satisfactory, part icu- 
larly f rom the point  of  view of  reaction kinetics. For  example, the Arrhenius exponential  
term is sometimes modif ied to read e x p [ - E ~ / R ' ( T ' - T ~ ) ]  instead of  e x p ( - E f 4 / R ' T ' ) ,  
where T~ is the ambient-a tmosphere  value of  the absolute temperature T', E~, is the 
activation energy per mole and R '  is the universal gas constant ;  the reaction is therefore 
artificially switched off when T'  is equal to T~. 

Since E~, /R 'T '  is usually a large number,  the reaction rate under  ambient  a tmospheric  
condit ions is exceptionally small and one intuitively feels that  it must  be of  negligible 
practical significance. Thus the asymptot ic  approach  that s imply discards terms of  
exponential ly small size is attractive f rom the point  of  view of  intuitive physics, as well as 
for the rather more  solid reasons that m a n y  of  its predictions accord so well with 
observations of  thermal-f lame structure and behaviour.  

The avoidance of  " co ld -bounda ry"  problems by adopt ion  of  half-space f lameholder [7] 
models  of  plane steady combust ion  wave behaviour is a step that has its attractions, since 
it only requires some assertion about  the flux of  the products  of  combust ion  at the 
f lameholder  (usually that the flux is zero) in order  to complete formulat ion of  the 
problem. The concession that this demands  f rom a rational model  of  the physics of  the 

105 



106 

situation is slight, and the configuration has recently been exploited to study plane 
combustion waves whose speeds (i.e., flow speed through the face of the holder) vary 
continuously from conventional thermal-flame values, through a transitional range of 
structures, to "convected-explosion flames" at the threshold of the appearance of com- 
pressibility effects [3] and on into the regimes of fully-compressible reactive gas flow 
[4,10], These studies make it quite clear that chemical reaction rates are of first-order 
importance in domains other than the one prescribed by classical thermal-flame structure, 
namely the mainly diffusion-reaction-structured flame sheet that is found downstream of a 
predominantly inert convection-diffusion-balanced pre-heat zone, even though the rates in 
these domains are exponentially smaller than flame-sheet values. 

The existence of a thermal flame at the far-downstream tail of a long precursor 
(convected-explosion) region of relatively small temperature variations means that the 
half-space model can be exploited to study other aspects of flame behaviour than the 
simply structural but, despite this fact, there is a persistent feeling that it is both necessary 
and possible to model combustion waves in essentially unbounded domains. If the lessons 
that have been learnt from the flameholder models are to be heeded one must not alter 
Arrhenius reaction kinetics in any way, which means that one must necessarily accept that 
the ambient atmosphere into which the combustion wave is propagating is not in a steady 
state. 

The only solution of the conservation equations that is devoid of all spatial non-uni- 
formity demands both zero speed of gas movement and constant density; pressure and 
temperature T~ will then both be increasing with time. Having first established a suitable 
set of basic equations, the present analysis sets out to investigate the behaviour of the 
difference ( T ' -  T~) when this difference is representative of a propagating combustion 
wave. It follows that ( T ' -  T~) will be driven by a reaction rate that is the excess of the 
local rate over the ambient constant-volume rate appropriate to T~. 

A prime assumption, made early on in the analysis, is that, relative to the combustion 
wave, the field is quasi-steady. To this extent the present ideas are quite like the ones 
described by Aldushin et al. [1]. (This paper was brought to the author's attention by 
Professor Paul Clavin after the present analysis had been completed; Dr. M. Nettleton 
kindly made a reprint available to the author.) However, there are important points of 
difference between the two analyses; in particular there is the assumption by Aldushin et 
al. that the basic equation is a reaction-diffusion equation without convection (change of 
local convection rates, or gas-speeds, is an important feature of all real combustion 
waves), and its subsequent modification to describe the field of a temperature ratio (like 
T'/T~) rather than a difference ( T ' -  T~). As a consequence, there is an implication in 
Aldushin et al's analysis that the reaction-rate difference that appears in their equation for 
T'/T~ is a difference between local and far-upstream reaction rates, both taken at 
constant pressure. In broad terms, and certainly for the purpose of their investigation, this 
matter is not of great significance to the work of Aldushin et al., but in application to 
other problems than theirs this difference can be significant. There can be no doubt that 
the present analysis of the temperature difference (T'  - T~) is firmly based on the proper 
conservation equations and their consequences. 

An extensive, basic, and most interesting analysis of the structure and speed of 
propagation of pre-mixed flames, that makes use of the model of Aldushin et al. has been 
undertaken recently by Clavin and Li~afin [6]. To the extent that phase-plane pictures like 
those in Fig. 1 here also appear in Clavin's and Li~ahn's paper there are evidently 
similarities between their work and the present study. However, one must reiterate that the 
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Aldushin et al. model examines T'/T d whereas here we deal with ( T ' -  Td); also Clavin 
and Lffahn are principally interested in questions of uniqueness and, especially, for a 
certain class of reaction-rate models, of the changes in reaction-wave propagation speed 
with (effectively) activation energy of the reaction, starting from zero. Thus the present 
work complements the study by Clavin and Li~hn and, most particularly, indicates how 
matters go when reaction-wave speeds are in excess of the conventional adiabatic 
thermal-flame speeds. The length scales of these faster flames can be realistically short and 
"observable" when their ambient atmospheres are hot, and they may well therefore be key 
elements in transitional or unsteady combustion processes. 

After listing the basic conservation and other equations in Section 1, Section 2 
describes the main features of the constant-density ambient atmosphere. These results are 
combined in Section 3 to produce general and exact equations for differences in stagna- 
tion temperature and reactant concentration. With the assumption of quasi-steady condi- 
tions and very small Mach number of wave propagation, a single equation for the 
temperature difference is derived, and its general solution and consequences are described 
in Sections 4 and 5. 

1. Basic equations 

The energy, species and momentum equations for a one-dimensional unsteady flow are, 
respectively, 

, ,t aTe' , aTe' ] ap' a (_,  aT' 

a (  x ' a ,  ,2)} (1.1) 

,/aca ,aca' a X' aco / 
p ~ --~-+ u ~ )  =-3-~-7x,/Le--~ ax' j-o'W~?',  a =  X, F, (1.2) 

,¢au' ,au'} 0 p ' + ) L {  _ X'au'~ 
P~-'~7-+u--ffffx' = - a x '  ax' ~erc-~-~-Tx')' (1.3) 

where p', p', T', T~', u', c a are pressure, density, temperature, stagnation temperature, that 
is, 

I U '2 
T~'= T '4  2 Cp'  (1.4) 

velocity and mass fraction of species a ( =  X, F for oxidant and fuel, respectively). 
Thermal conductivity is written as ~' while Pr and Le are the Prandtl and Lewis numbers. 
The specific heat at constant pressure is C~ (assumed constant), Q' is the combustion 
energy per unit mass, W a is the molecular weight of species a; a = P signifies the product 
species and 

w~ = Wx + w~ = w~(1 + o). (1.5) 
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By implication the combustion reaction is 

F + X---, P, 

whose rate of progress is 

1 
(1.6) 

Tch 

The chemical time Tch is dependent upon activation energy E~,, sound speed a~, etc, as 
follows: 

= a '2 / E ~ ]  s 
! A3 f e-E;'/R'r'l (1.7) 
"rc~ W F ~ i ) r  ~ R----~} ' 

where R' is the universal gas constant and Ae" is the thermal diffusivity, 

~ ' =  X'/p'C~ (1.8) 

The index s in (1.7) is a small number, of order _+ 1 for example, while A 3 is also a 
number of order unity, but essentially positive. 

The thermal equation of state will be used in the form 

, ,_ , [  7 f -  1 
p =.p t~p t ------~r ) r '  , (1.9) 

where 7f is the (constant) ratio of frozen specific heats, and the continuity equation is 

8 p '  8 ~ , ,~ 
+ u ) = o .  

The frozen sound speed is a~, such that 

t 2  
a f - -  y f p ' / p '  = Cp ( ' y f -  1)T' ,  

and this will be useful later on. 

(1.10) 

(1.11) 

2. A m b i e n t  a t m o s p h e r e  

If a combustible atmosphere is spatially uniform, so that 8( ) / Sx '  is zero for all ( ) ,  
( 1 . 1 ) - ( 1 . 3 )  give 

P'oCpT~)c - Po,' = p~)WpQ'~), (2.1) 

c~0 ', = - W,,,~'(~, a = X, F, (2.2) 

U0c' = 0  =, u 0 '=0 (say), (2.3) 

where subscript 0 denotes the value of a quantity in this atmosphere. Equation (1.10) 
shows that 

O~) = constant, (2.4) 



whence (1.9) gives 

p;),, = O~Cp ( "Yf - 1 ] T' 
.yf ] ot'. 

Equations (2.1) and (2.5) combine to give 

c ' r ' , ,  = WpQ'~l~, 

and this result together with (2.2) shows that 

C,~T~ + Q'(cx0 + Cro) = coast., 

where C" is specific heat at constant volume. 
Similarly (2.2), with a = X, F, give 

¢XO CF0 eXOi ¢F0i  
- -  = coast. w× wF w× wF 

where subscript i signifies an initial value. Thus 

CX0 = CX0 i "1- O'(CF0 - -  CF0i)  , 

and (2.7) can now be written as 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

C~'T~ + (1 + o)Q'CFo = constant. (2.10) 

It will be assumed from now on that the fuel /oxidant  mixture is a lean one, so that 
combustion ceases when c F, or in the particular case ¢FO, is zero. Thus (2.10) can be 
written as 

C,~(T~f- T~) = (1 +o)Q'CFo , (2.11) 

where T~f is the final temperature in the present constant-volume process. 
In terms of initial values T~i and CF0i, (2.10) Can be written as 

C'T~ + (1 + o)Q'CFo = C'T~i + (1 ~- o)Q'CFo i . (2.12) 

Thus 

O t 
Tof ~-- ~0i +(1  + o)  ~-f Cv0i, 

and T~f is a constant for any given initial conditions. 

(2.13) 

3. Derivation of  an equation for the temperature 

Since T~ and Cao are functions of t '  only, (2.1) can be subtracted from (1.1), and (2.2) 
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from (1.2), to give the following equations for the differences T~' - T~ and c F - CF0: 

_ ap' p' ap~ +_~__£7{)t,O_O_O£7(Ts,_ Td)}+p,Q,Wp(~,_~l~), at' p~ at' (3.1) 

, a a,(c _Coo)} p {V(co-  C.o) + u'b-Wx, 

=ax'  g-Wx,( o-Coo) -o'wo(~'-&), ~ = X , F .  (3.2) 

Prandtl number has been given the value ~ and Lewis number the value unity; these 
assumptions make the analysis simpler without impeding seriously the proper modelling 
of the events whose progress is to be followed. At this point the proposition will be 
adopted that these events are of a quasi-steady character so that, in a first approximation 
at least, the partial time derivatives of T~' - T~ and c a - %0 can be neglected relative to 
each of "the other terms in the equations, including the ones proportional to ~ ; .  As with 
any proposal for an approximation it must be inspected subsequently to be sure of its 
validity, and this is done in Section 5 below. The implication is, in essence at this stage, 
that the typical time for changes in (T  s' - T~) and (% - %0) is longer than rch (see (1.6)) in 
the ambient atmosphere: there is no a priori reason why these differences should vary at 
the same rate as T~ or %o separately. 

By the same token (1.10) simplifies to the extent that 

p'u'= m'(t') = p 'u ' ,  (3.3) 

where m' is a quasi-steady, or slowly-varying mass-flux and p ' ,  u "  are the values of 
density and flow velocity where x '  ---) - o¢. 

In terms of the variable 4, where 

l~= foX'( m'Cp/)~')dx' , (3.4) 

the quasi-steady version of (3.1) and (3.2) become 

(T; -  r ~ ) -  (r;-r~)--(l+o)~W~u,2(~'-&), (3.5) 

DE , 
(co - c,0) - - g ~  (co - c,0) = - w o ~ '  ( ~  ' u , 2  -~ ; ) .  (3.6) 

Equations (1.5) and (1.8) have been used in the derivation of these results, which show 
that 

- -  - -  _ _  I t 2  v t T" T~+(1 +o)(Q'/Cp)(c F cFo)--~(u~o(t )/C;), (3.7) 



since T' o T~ and c F --* CF0 where ~ ~ - ~ ,  by hypothesis. 
With the lean-mixture assumption (1.6) and (1.7) can be used to write 

~-~, e-°'/r 'CF(1 + a)  ( 1 + ° ) ~ ( ~ ' - ~ ; ) - - c × ° ' 3  w~ T x 

a f0 -o, /r;c  o) 
-- ~'r; ~ o  ' e  F0(1 + ' 

where 

O' - E~,/R' .  

But (3.7) makes 
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(3.8) 

(3.9) 

(l  + o ) Q ' c  v = ( l  + o ) Q ' c v o  - C ~ ( 7 [ -  T ~ ) - "  ~-~u'2~, (3.10) 

or, in view of the fact that the reaction will cease when c F vanishes and T[ takes the value 
T~' b, where T[b is given by 

, , _ + 1.,2 (3.11) C;(T~b Td) = (1 + o)Q'CFo ~u ~,  

one can write (3.10) in the form 

(1 + o)Q 'c  F = C;(T:  b - T[). (3.12) 

Equation (2.11) shows that 

(1 + o)O'CFo = C ' ( T d f -  Td), (3.13) 

so that (3.8) with (3.12) and (3.13) becomes 

(1 + o) ~ ' - ~ ; )  

4 A3 ( ( O , , , a , 2  ( O , ) s  ,2 1 
a t__..~Oe_a,/T~._t - , , =Cx0i 3 WF -~--7) ~ , , e - O ' / T ' ( T s P b  - T ' ) -  ~ ,9~'~ ~f(T~f-- Td). 

(3.14) 

Combination of (3.5) and (3.14) gives 

~---~(T[- T ~ ) - ~ E  ( T [ -  7~) 

4A3 a'ff O' s{ l[T'l~(a'@o, 12(JT") } 
=Cx°i 3 u '2(-T -7) e - °" / r '  ( Ts'b - T' ) - ~/t ~ T~ ] a f , k ~ -~  e - °' /r~ ( Tdf - T° ) ' 

(3.15) 
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and we note the appearance of two dimensionless groups namely (a~/u ' )  2 of which more 
will be said shortly, and 

Td] af } /~o;o' = T-~ (3.16) 

The final form of (3.16) follows from the fact that X'/X~ is equal to (T ' /T~)  '~, 0 < ~o < 1, 
in many circumstances. Little accuracy in the modelling for present purposes will be 
sacrificed if we choose the simplest value, 

o~ + s = 0, (3.17) 

and this will be adopted from now on. 
The local frozen Mach number can be written as 

u' 12 - u'___~?, u_..~ 2 _ M2U 2 (3.18) 
a'f} a2oi a~ T '  

where 

U ~ 
u' a'~ T' 

, ,  a ~  = - - ~  T. (3.19) 
Uf aff0i T~i 

The values with subscript 0i are ambient-initial values and M is the ambient initial Mach 
number of the flow. Since 0' is usually a large temperature (typically 2 x 104 K) it is clear 
that the dominant behaviour of the right-hand side of (3.15) is encapsulated in the 
exponentials e x p (  - O'/T ' )  and exp( - O'/T~) in the ( ) term, together with the differences 
(T~' b - T ~ )  and (T~e- Td). The coefficient of ( } has an important role to play as a 
determinant of magnitude of the right-hand side of (3.15), but its variations with 
throughout the ~-domain ( -  ~e < ~ < ~ )  that come from changes in u and T (see (3.18)) 
are less significant and so (3.15) will be simplified to read 

0 2 A(e-O/r(Tsb_r~) le-o/rO(Tof_To)), ~---~ ( T~ - T° ) - -O-~ ( Ts - T° ) = Yf (3.20) 

where 

A ~ 4 ¢ x 0 i A 3 0 S ~ - 2  , 0 -~- 0 t / Z ~ i ,  (3.21) 

and all temperatures T~, To, Tsb and T0f are now measured in units of the initial ambient 
value T~i. The quantity J t  '2 in (3.21) is equal to M 2 at the initial instant, but must be 
allowed to vary (slowly) with time thereafter; that is to say one must take into account the 
t ime-modulations implicit in (3.18), but the spatial changes in u 2 / T  are neglected. 

The dimensionless stagnation temperature is evidently given by 

T~ = T +  ½(Yf- 1) M2u2 (3.22) 

in view of (1.11), (3.18) and (3.19). 
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The proposition that M 2 is very small now reduces (3.20) to a single equation for T, 
given that T o is known from the work of Section 2, as follows: 

(C) (D) (R) 

a--~ O ( T -  T ° ) -  ~" 02 A( e-o/r(Tb T ) -  l--e-a/r°(T°f- T°)) _--:'7.. ( T -  To)= - 
3'f 

(3.23) 

Identification of the terms here as C (convection), D (diffusion) and R (reaction) will be 
useful later on. 

Reverting to dimensional forms for a moment, observe that (2.11) and (3.10) combine 
to give 

p , 1[ ,2 _ _  U,2) .  (1 + o )O ' c  F = C~(T/~f- Td) - Cp(T' - Td) + ~ u  

The final term here is of order M 2 in dimensionless variables and must be dropped to be 
consistent with (3.23). The temperature 7-~, or T b, is then evidently given by 

1 T, ro= ( o f -  TO). (3.24) 

Thus R in (3.23) vanishes when T = T 0, as it should. It will also vanish when T = Tb-, 
where 

Tb_ Tb_= ffexp( 0 0 }(roe- TO), (3.25) 

and it is not difficult to see that this can only happen again if T b_ is very nearly equal to 
Tb, given that T b is, say, at least 3 or 4 times larger than T 0. The fact that T0f will be of 
this sort of size, by hypothesis, guarantees the requisite T b behaviour, as can be seen from 
(3.24). 

The right-hand side of (3.25) is essentially positive, hence the burnt temperature, as 
defined by (3.25), will be slightly less than T b. This will be recognized by stating from now 
on that R in (3.23) vanishes when T =  T O and T =  Tb_, where the latter is found from 
(3.25). 

Since, from (3.24), 

1 T, y f - - 1  :rb=  of+ 7"0= rb_, (3.26) 

and Tof is a constant, as shown by (2.13), it follows that T b and hence also T b_ both 
increase (slowly, by hypothesis) with time as T O does likewise. 

4. Solutions 

Equation (3.23) describes the behaviour of a disturbance to the unbounded ambient 
atmosphere that is not limited in amplitude (that is to say, it is not a small disturbance). 
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F i g u r e  1. Integral curves on the temperature-slope V vs. temperature T plane. Arrows show the direction of 
increasing; n is a nodal point, reached as ~ ~ - oo, while the saddle point at s is reached as ~ ---, + oo. C, D and 
R refer to convection, diffusion and reaction (c.f. (3.23)) and their combinations on the figures indicate the 
dominant local influences in the wave structure. With ¢gcad as the "adiabatic thermal-flame" Mach number 
Figures (a), (b) and (c) illustrate the cases ~¢ > "¢/ad, " / / =  "¢/ad and ..gO < "¢/ad, respectively. 
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The disturbance is hypothesised to be travelling at a speed u"  that varies only weakly 
with time. 

First note that with 

V = d ( T -  To) 
d~ (4.1) 

(3.23) is a first-order non-linear autonomous differential equation for V = V(T), namely 

dV V -  Ar~ 
dT V ' (4.2) 

where 

4 -  e-e/r(Tb -- T) - l e - ° / r O ( T o f -  To). 
"If 

(4.3) 

Singular points of (4.2) occur when T = T O or Tb_, and V is zero. 
Using (3.24), ~ can be re-written as follows: 

4= l (e - ° /r -  e-e/r°)(Tor- To) - e - O / r ( T  - To), 
Yf 

(4.4) 

and near to T = T O this behaves like 

V = e - e / r ° {  # 1 } 
- - ~ f ( T o f -  T o ) - I T 2  (T-To)+ . . . -  K o ( r - T o ) +  . . .  (4.5) 

where K o is defined here for convenience. Thus the integral curves of (4.2) have their 
behaviour prescribed by 

dV V -  A K o ( T -  To) 
d-T = V ' (4.6) 

in the neighbourhood of T = T 0, V = 0. The characteristic equation of (4.6) or, better, of 
the pair 

dV dT 
d--~- = V -  A K o ( T -  To), d--~" = V, (4.7) 

has roots equal to ½ _+ (1 _ AKo)I/2. Thus these roots are real, positive, and unequal since 
we may take it that 4AK o is less than one. It follows (e.g. from [8, Chapter 4, Part B]) that 
the point (To, 0) is a nodal point, that is approached only as ~ -+ - oo. Furthermore, all 
the integral curves emanate from (To, 0) as tangents to the line 

v= {½- ( l -  Aro)IJ:}(r- To), 

except for the single curve that leaves (To, 0) along 

(4.8) 

V= { ½ + ( l -  A K o ) I / 2 } ( T -  To). (4.9) 
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In the neighbourhood of (Tb_, 0), (4.2) behaves like 

dV V + A e - ° / r b - ( T  - Tb_ ) 
dT  V (4.10) 

whose characteristic equation has roots 1 /2  _ {1 /4  + A exp( - -0 /Tb_) )  1/2. These two 
roots are real, unequal and of different signs, so that (Tb_, 0) is a saddle point. The 
integral curve that enters (Tb_, 0) as ~ ~ oo does so along the path that corresponds to the 
negative root; the magnitude of this root is strongly dependent on the size of 
A exp(--O/Tb_ ) and from the definition of A in (3.21) it is clear that this is determined 
by the value of ..¢¢2 for any given combustible mixture (i.e. any given 0 and Tb_, in 
particular). 

It is important to observe that even when A exp(--O/Tb_ ) is large, the quantity AK 0 
(see (4.5) for K0) will usually be very small as a result of the dominant influence of 
e x p ( - O / T o )  in the latter when 0 is large. 

Integral-curve behaviour is sketched in Fig. 1, which will be described in more detail in 
the next section. The general features of this behaviour at locations other than the singular 
points can be explained as follows. The dotted line in Fig. 1 is the locus of points at which 
d V / d T  vanishes, namely V =  V~, where 

V~ = A@ 

(see (4.2)). From the definition of ~' in (4.3) it is clear that V~ is equal to the reaction-rate 
term on the right-hand side of (3.23). In the present context T O is to be thought of as a 
constant; 7f, 0 and T0f are essentially so. The shape of V~ is determined by the function 
(T  b - T ) e x p ( - 0 / T ) .  It can be shown that this function has a single maximum for 
temperatures in the interval T O < T < Tb_, which lies at T b _ -  T 2_ 8-a to leading order 
for large values of 8. The integral curve of negative slope that enters (Tb_, 0) must do so 
from the domain 0 < V < V~, T < T b_. The set of integral curves that enter (T  0, 0) as 
tangents to the line (4.8) must lie above V~ in the neighbourhood of (T  0, 0). Any integral 
curve that crosses V=  0 at an ordinary point just do so with infinite slope. All integral 
curves have positive slope for V > 0 unless 0 < V < V~, T O < T < Tb_, when their slopes 
are negative. 

5. Discussion of the solutions 

For particular values of T o and T b_ the integral-curve behaviour depends only upon the 
value A (recall that 0, T0f and 7f are all prescribed constant values). It is sufficient for 
present purposes to define the propagation Mach number .A/by the following expression: 

..g-2 = BOm exp(0 /Tb  - ), (5.1) 

and to note that the new parameters B and m can be weak functions of time, as indeed is 
T b .  Then (3.21) and (5.1) combine to give 

A = 4CxoiAaOSBOm exp( O / T  b_ ) 

=-AOU exp(O/Tb_) ,  N = - m +  s, A=-]CxoiA3B. (5.2) 

Since 0 can be thought of here as a largish number, in the neighbourhood of say 50 to 100, 
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with T b_ in the range of 5 to 7, for example, it follows that ~g2 will always be a small 
quantity (as required), when B and N are numbers of order unity. The particular choice 
of ..¢/-2 in (5.1) puts this Mach number in the neighbourhood of thermal-flame values and 
makes comparisons with the author's paper [3] easy. 

The solution curve that enters the saddle point now has a slope ½ - (¼ + AoN) 1/2, as 
can be seen from (4.10) and what follows it. When 0 is in the quoted range of values and 
recognising that T o is of order unity, at least initially, it can be seen that A K  0 in (4.6), etc, 
is very small. The integral curves therefore all enter the nodal point as tangents to the line 
of small slope A K  0 (approximately), except for the single line whose slope is unity for all 
practical purposes. These features are illustrated in Figs. l(a), l(b) and l(c), representing 
three different Mach numbers of propagation of the combustion wave; the node is point n 
and s denotes the saddle point. Furthermore, it is useful to know that, when Tb/O is small, 
the maximum value of V~ is given to leading order by A e-10u-1Tb2. Thus as either A or N 
increases, which implies here an increase of B or m, the Mach number ~¢ decreases. Thus 
Fig. l(a) represents a propagation speed that is fast relative to the value implicit in Fig. 
l(b), whilst Fig. 1(c) is sketched for a speed that is similarly relatively slow. 

The diffusive or D term in (3.23) is given by 

- VdV/dT 

in the terminology of Section 4, from which it follows that D is comparable with C where 
]dV/dT I is of order unity. The fact that the solution sketched in Fig. l(b) emerges from n 
along the singular line whose slope is equal to + 1 for all practical purposes, coupled with 
the fact that the R term in (3.23) is very small in the neighbourhood of n means that C 
and D are the dominant process in the upstream parts of that particular flame, and Fig. 
l(b) is labelled CD accordingly. 

Note that R in (3.23) is equal to Arg = Vs, using (4.3) and (4.11). Thus the dotted lines 
in Fig. 1 give some rough and ready indication of the relative magnitude and importance 
of R. 

Since dV/dT is given by ½ -  (~ + AON) 1/2 near s it is numerically large for large 
values of 0, and N not too zero. The latter is assumed throughout Fig. 1, and accordingly 
all of the flame structures (implicitly) illustrated there have a predominantly diffusive-re- 
active balance, or "flame-sheet", in their downstream regions; the label DR on Fig. 1 
denotes this fact. 

Fig. l(b) is a particular, eigenvalue-like, case for which .At' is equal to "//gad (say) that 
has all the features of a classical adiabatic thermal flame. In the circumstances this fact is 
much less remarkable than the fact that a continuous spectrum of admissible flame speeds 
exists on either side of this special value (c.f. the work of Johnson [9], where it is 
concluded from analysis of an equation like (3.23) that a unique eigenvalue for flame 
speed will only exist if the reaction-rate vanishes in a finite neighbourhood of the point 
(0,T0); if, as here, reaction rate or reaction-rate difference vanishes in proportion to 
( T -  T 0) as T ~ To, then all speeds of propagation greater than some minimum value are 
possible; the existence of and conditions near to this minimum value are not dealt with in 
the present work, whose objectives and aims are different from Johnson's). 

First consider Fig. l(a), for which ~ >..glad. The particular solution curve that emerges 
from n and enters the saddle point s does so as a tangent to the line on the V, T plane 
whose slope is given by 

aKo)'   = AKo << 1. 
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Thus D is initially a small effect, the initial structure is that of a convected-explosion or 
CR process. As both V and T increase on the solution curve the associated rise in d V / d T  
means that a C D R  region appears locally and quickly blends into a largely CD domain. 
The DR-type of flame sheets persists at the rear of the combustion wave, and the whole 
fast-flame picture here is simply the unbounded space version of the faster-than-adiabatic 
structures described in the author 's  [3] analysis of half-space or burner flames. Such a 
system has been described as a thermal flame, CD + DR, riding at the far-downstream 
end of a convected-explosion precursor. 

The situation represented by Fig. l(c) has ~ <..¢/ad, SO that the solution-curve enters s 
with a larger negative slope than is the case with the adiabatic flame. As a result it must 
emerge from n into regions of T < T O and V < 0; the solution-curve is still tangent to the 
line of small slope A K  o through n. Thus the temperature far ahead of the main thermal 
flame (CD and D R  both still exist at the rear of the wave, as shown in Fig. l(c)) starts by 
decreasing to a minimum value Trnin essentially > 0, before increasing to merge with the 
familiar CD-type pre-heat zone. The complex of CR, D R  and C D R  domains through 
which it makes this progress are indicated on the figure; the unimportance of C is 
localised to the immediate neighbourhood of V = 0, of course, and one may choose to 
ignore the localised presence of the D R  zone and treat the transition from n as essentially 
via domains of CR and C D R  balance, before entering the pre-heat CD segment of the 
(non slower) thermal flame. The distinctions between Figs. l(a) and (c) are then no so 
great, as the formal sequence of structures is identical in the two cases. 

I t  is important to remember that the present quasi-steady-combustion-wave structures that 
formally occupy the complete space - o o  < ~ < oo, cannot do so in reality. Since the 
quasi-steady solutions make V-o  0 as I~1 -- '  oo it is clear that the time-derivative terms 
that have been dropped from the exact equations (3.1) and (3.2), for example, must begin 
to play a significant part  as I~ I increases, and before V in fact vanishes. We must therefore 
regard the present quasi-steady waves as entities that are not only to be properly matched into 
a larger field of disturbances, but which are actually strongly dependent upon the detailed 
nature of this surrounding disturbance field. With the limit ~ ~ - oo treated as part  of a 
proper asymptotic matching requirement it is easy to see how the situations depicted in 
Figs. l(a) and (c) will be linked with a disturbance field in which the temperature far 
ahead of the combustion wave is increasing above T O or diminishing below it, respectively. 
That  there must be limitations to the range of acceptable disturbance fields can be 
appreciated; the situation is not a simple one and it is hoped to report on some illustrative 
cases in due course. 

The previous paragraph constitutes one of the main conclusions to be drawn from the 
present analysis. To reiterate and expand upon its contents a little, it can now be 
appreciated that a truly steady-state flame is unlikely to occur in an unbounded atmo- 
sphere. However, quasi-steady structures are to be found, occupying the central combus- 
t ion-dominated core of the whole flow field, and of a type which exactly mimics those 
structures previously described for half-space or "'burnder" flames [3-5,10]. 

One final point: the foregoing analysis of the quasi-steady flame is put together on the 
proposition that the term ~ must be retained in (3.5), (3.6), and hence in (3.23); as a 
consequence a temperature field is predicted for all ~ in - o o  < ~ < oo. In view of the 
requirement to study flames in unbounded atmospheres that last fact is important,  at least 
in the early part  of the analysis. If  the temporal variations in any particular case are in 
fact slow enough, then the details of conditions near to the node n (whose existence is 
consequent upon retention of ~ )  must be important  and are, of course, known. If 
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t e m p o r a l  changes  are  swif ter  t h a n  the size of  ~ impl ies ,  the  quas i - s t eady  s t ruc tures  fail  i n  
a re la t ive ly  larger  n e i g h b o u r h o o d  of  the  node ,  a n d  b e h a v i o u r  at  a n d  n e a r  to n is t h e n  
i r r e l evan t  to  a so lu t ion  of  the  c o m p l e t e  f ield;  the core  of  the  quas i - s t eady  f l ame  s t ruc tu re  
will  still be  val id ,  of  course ,  a n d  will n o t  be  af fec ted  to a n y  s ign i f i can t  degree  b y  the  

p re sence  or  ab sence  of  ~ .  
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